
Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey of
Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

A Survey of Empirical Studies on Performance

Enhancement Features for IR-Based Bug

Localization Process

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola

Ganiyat Akintola

Department of Computer Science,

University of Ilorin,

Ilorin, Nigeria

Email: salihusa1980@gmail.com,

 abikoye.o@unilorin.edu.ng,

 bajehamos@unilorin.edu.ng,

abimbola.akintola@gmail.com

ABSTRACT
Software is inevitable to have bugs. Localization of bugs has attracted many researchers due to its importance in

software maintenance. Automation of Bug localization using Information Retrieval (IR) -Based approach has been

proposed to attract more researchers due to its relatively low computational cost. Despite this automation,

localization of bugs still takes the developers many hours or days to locate bugs. This paper tends to do a survey of

some features that can be added to IR-Based bug localization process to enhance its performance and give a better

result in terms of accuracy. The result from the six tools considered for this survey shows that there is an

improvement in those with enhancement features compare with the baseline that has no enhancement features. The

top N, MAP and MRR values of these tools outperform the technique without any enhancement.

Keywords: Bug Localization, Software Maintenance, Information Retrieval

African Journal of Computing & ICT Reference Format:

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye,
Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018),
A Survey of Empirical Studies on Performance Enhancement
Features for IR-based Bug Localization Process,
Afr. J. Comp. & ICT, Vol.11, No.4, pp. 65 - 70.

© Afr. J. Comp. & ICT, December 2018; ISSN 2006-1781

65

Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey
of Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

I. INTRODUCTION

It has always been an inevitable scenario for software to

develop fault despite the energy and resources developers
devote in producing software. Sometimes, the fault might

not be detected immediately but as update continues, size

and complexity grows and more use persists, there is

tendency for the software to have bugs or faults. A

software bug, or sometimes called fault, is a situation

where software can no longer perform to its expectation.

In other to fix bugs in software, developers set up a bug

repository for collecting bug reports from users. A bug

report is a detailed description, in a natural language text

of the problems encountered in using the software. Bug

reports are essential and vital for any software
development. It is through the bug report that a customer

is able to inform developers about the unexpected result

encountered in using their software [1]. It usually contains

a Bug Identifier (ID), Open date (the date a bug was

submitted), fix date (the date a bug was fixed), summary

and description (detailed information of a bug) [2].

In other to improve the reliability of systems, developers

often allow users to submit bug reports to bug tracking

system [3]. A Bug Tracking System (BTS) deals with the

keeping track of reported bugs in software development.

It is responsible for the management of bug repositories
and help to document, assign, close and archive bug

reports, which will later be sent to the developers of the

software to locate and fix the bug. To manage bugs that

appear in a software, developers often make use of a bug

tracking system such as Bugzilla [4]. Open source

development projects typically support an open bug

repository to which both developers and users can report

bugs [5].

Bug localization is an instance of concept location, where

the change request is expressed as a bug report, and the
end goal is to change the existing code to correct an

undesired behavior of the software [6]. One of the most

time-consuming tasks to resolve a bug report is to find the

buggy files that are responsible for a reported bug. A

system may contain thousands or more files and often

only one or few of these files need to be changed to fix a

bug [3]. The study carried out by [7] in which 374 bugs

from Rhino, AspectJ and Lucene were analyzed found

that 84-93% of the bugs resided in 1-2 source code files;

this shows how difficult the task of bug localization can

be. In cases of large software products, the number of bug

reports in its bug repository may be so many that it will be
very tedious for developers to resolve the large number of

bug reports.

According to the study reported in [8], only Eclipse

project received 4,414 bug reports in 2009 while [5]

reported that every day, almost 300 bugs appear that need

triaging and Mozilla projects received 51,154 bugs in 4

years. It is always challenging for developers to

effectively and efficiently remove bugs, while not
advertently introducing new ones at the same time [9].

Therefore, effective methods for locating bugs

automatically from bug reports are highly desirable [10].

To overcome this issue, automated bug localization

techniques, take as input bug reports and use textual

information from the summary and description fields of

these reports to find the buggy source code files [4].

The automation involves the use of Information Retrieval-

(IR) based and Spectrum-Based approaches. The IR-

based approach works by computing similarities between
a reported bug and source code file [10] [11]. The source

code files are then ranked based on their similarities to a

reported bug. In spectrum-based approach, bugs are

located via program execution information [12].

Despite these approaches for automatic bug localization,

the developers still have a lot of source code files to

search through before the buggy files can be found. In

other to improve the performance of these approaches,

there are some features identified which when combine

with these two automated approaches will greatly increase

the accuracy of the bug localization process. This paper
reviewed some of these features and also shows the result

of those that have used them before.

II. LITERATURE REVIEW

This section discusses some identified features that

developers normally take into consideration when

carrying out bug localization manually. Some of these

features are not incorporated into the automated process.

1. Stack Traces

2. Similar/Previously Fixed Bug Report

3. Version History

4. Components Structure

5. Dynamic execution Information

Stack Traces: Bug reports often contain stack trace

information, which may provide direct clues for possible

buggy files. Source files that are related to stack traces

information in the bug report can be used to increase the

ranking of the file based on the observation that the files

covered by the stack trace are more likely to be bug-

prone. Stack trace information refers to when an

exception handling occur. Figure 1 presents an example of

66

Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey
of Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

a stack trace contained in a bug report of Eclipse, it

contains a very long stack trace observed by the bug

reporter. In the real fix of this bug, file table.java which

also appears in the stack trace is actually modified [13].

This implies that buggy components can be easily located

by analyzing the stack trace in bug reports.

Bug ID 87855
Summary NullPointerException in

Table.callWindowProc
Here is a stack trace I found when trying to kill a
running process by

pressing the kill button in the console view. I use
3.1M5a.
!ENTRY org.eclipse.ui 4 0 2005-03-12 14:26:25.58

!MESSAGE java.lang.NullPointerException
!STACK 0
java.lang.NullPointerException

at org.eclipse...Table.callWindowProc(Table.java:)
atorg.eclipse...Table.sendMouseDownEvent(Table.java
:2084)

at org.eclipse...Table.WM
LBUTTONDOWN(Table.java:3174)
atorg.eclipse...Control.windowProc(Control.java:3057)

atorg.eclipse...Display.windowProc(Display.java:3480)
...
atorg.eclipse.core.launcher.Main.run(Main.java:887)

atorg.eclipse.core.launcher.Main.main(Main.java:871)

Figure 1: Bug report with stack traces

Previously Fixed bug: This is often called similar report;

it refers to the files responsible for a bug fixed recently

which are more likely to be responsible for other bugs in

the near future. That is, information on locations where

past similar bugs were fixed could help locate the relevant

files for the new bug [8]. Figure 2 shows an example of an

older report with ID: 50303, which were reported nine

months before the bug report with ID: 76138 shown in

Figure 3. The two bug reports share common words
which are highlighted and these can be a pointer to the

buggy files.

Version History: This refers to historical data of changes

made to source code files that are stored in a version control

system during program evolution. This historical data can be

used to improve bug localization performance [3] [14].

Components Structure: Bug reports and source codes files

have structures. Bug reports have several fields including

summary and description. Source code files can be split into
class names, method names, variable names and comments.

This structural information can be leveraged for bug

localization [3] [15].

Dynamic Execution Information: It helps in complimenting

the ranking of IR-based technique, it comprises of coverage,

slicing and spectrum information. [16] stated that, spectrum

information can help by ranking program entities based on

suspiciousness scores and its ranking can complement ranking

by IR-based techniques, also coverage and slicing can help to
reduce the search space of IR-technique. Execution

information can also help to boost the performance of IR, but

it should be noted that coverage and slicing only help to

reduce the search space but cannot rank the buggy files while

spectrum suspiciousness score, if used with IR, will

complement its ranking.

III. COMPARATIVE RESULTS OF WORKS DONE

ON PERFORMANCE ENHANCEMENT

FEATURES

This section presents the result of other work done using

some of the enhancements features discussed in section II

and the improvement it has on bug localization process.

Discussion

BLIA: Is an IR-based bug localization process that uses

Stack traces, similar bug report and code change history

as enhancement features to boost the process. Their

results show that enhancement features can be used to

increase the performance of IR-based bug localization.

At the Top N rank (one of the performance metric for IR)

which is set to 1, 5, and 10. BLIA outperform the
baseline, where no enhancement features were added. The

Mean Average Precision (MAP), which is used to rank all

buggy files; and Mean Reciprocal Rank (MRR) which is

used for finding the first buggy files. From the table,

BLIA outperforms the MAP and MRR values of the

baseline.

BugLocator: It uses previously fixed bug report as

enhancement for the IR used. It also outperforms the

values of the base line both at Top N rank, MAP and

MRR across all projects considered.

BRTracer: This is based on the use of stack traces to
boost the performance of IR. The results shows that stack

trace, as an enhancement feature for bug localization

process, can improve performance.

Amalgam: Version history, similar bug report and

components structure were used as the enhancement in

this approach. Both their top N rank, MAP and MRR

results show the benefit of adding these features for IR-

based bug localization process.

Amalgam+: The result of this approach which uses

version history, similar bug report, stack traces, reporter

67

Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey
of Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

information and components structure as enhancement

features.

BLUiR: Components structure of the source code files is

used to enhance the performance of IR in this approach.

Their result also outperforms the performance of baseline

where no enhancement features was added.

The result of the six tools across all projects shows that

the there is a wide gap between the baseline result without

any enhancement and those with enhancement. For

instance, in Table 1 Amalgam at top 1, 5 and 10 for

AspectJ project has 44.4%, 65.4% and 73.1% while

baseline has 12.59%, 23.78% and 28.67%. This

percentage is considered low because the higher the

percentage of the top N ranks, the better the result. Also,

the MAP and MRR result for this approach has 0.33% and

0.54% while the baseline has 0.18% and 0.08%.

IV. CONCLUSION

This paper identifies some enhancement features that can

be used to boost the performance of IR-based bug

localization technique. Some of the research works

considered were able to get a better result when the

features are added than using only IR-technique approach

to bug localization.

It is therefore recommended that these features can be of

utmost importance and also boost the performance of IR if

added to the process.

REFERENCES

[1] N. Bettenburg, R. Premraj, T. Zimmermann, and S.

Kim, “Extracting structural information from bug

reports,” Proc. 2008 Int. Work. Min. Softw. Repos. -

MSR ’08, p. 27, 2008.

[2] Z. Shi, J. Keung, K. E. Bennin, and X. Zhang,
“Comparing learning to rank techniques in hybrid

bug localization,” Appl. Soft Comput. J., vol. 62, pp.

636–648, 2018.

[3] S. Wang and D. Lo, “Version history, similar report,

and structure: putting them together for improved

bug localization,” Proc. 22nd Int. Conf. Progr.

Compr. - ICPC 2014, pp. 53–63, 2014.

[4] F. Thung, T.-D. B. Le, P. S. Kochhar, and D. Lo,

“BugLocalizer: integrated tool support for bug

localization,” Proc. 22nd ACM SIGSOFT Int. Symp.

Found. Softw. Eng. - FSE 2014, pp. 767–770, 2014.
[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who Should

Fix This Bug ?,” . Proc 28th. Int. Conf. Softw. Eng.

ICSE '06, pp. 361-370, 2006.

[6] L. Moreno, J. J. Treadway, A. Marcus, and W. Shen,

“On the use of stack traces to improve text retrieval-

based bug localization,” Proc. - 30th Int. Conf. Softw.

Maint. Evol. ICSME 2014, pp. 151–160, 2014.

[7] L. Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi,
“Extended Comaparative study of association

measures for fault Localization,” Journal of

Software: Evolution and Process, 26,2 pp 172-219,

2014.

[8] J. Zhou, H. Zhang, and D. Lo, “Where should the

bugs be fixed? More accurate information retrieval-

based bug localization based on bug reports,” Proc. -

Int. Conf. Softw. Eng., pp. 14–24, 2012.

[9] W.E. Wong and V. Debroy, “Software Fault

Localization,” Technology, pp. 1–6, 2009.

[10] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry,
“Improving bug localization using structured

information retrieval,” Proc. 28th IEEE/ACM Int.

Conf. Autom. Softw. Eng., pp. 345–355, 2013.

[11] Shivani Rao and Kak Avinash, “Retrieval from

Software Libraries for Bug Localization : A

Comparative Study of Generic and Composite Text

Models,” Proc. 8th work. conf. on mining soft.

repo.(MSR'11), ACM,Waikiki,Honolulu, Hawaii. pp.

43–52, 2011.

[12] Rui Abreu, Peter Zoeteweij, “An Evaluation of

Similarity Coefficients for Software Fault

Localization.pdf,” 12th Pacific Rim Int. Symp.
Dependable Comput., 2006.

[13] C. P. Wong, Y. Xiong, H. Zhang, D. Hao, L. Zhang,

and H. Mei, “Boosting bug-report-oriented fault

localization with segmentation and stack-trace

analysis,” Proc. - 30th Int. Conf. Softw. Maint. Evol.

ICSME 2014, pp. 181–190, 2014.

[14] K. C. Youm, J. Ahn, and E. Lee, “Improved bug

localization based on code change histories and bug

reports,” Inf. Softw. Technol., vol. 82, pp. 177–192,

2017.

[15] S. Rahman, K. K. Ganguly, and K. Sakib, “An
improved bug localization using structured

information retrieval and version history,” 2015 18th

Int. Conf. Comput. Inf. Technol. ICCIT 2015, pp.

190–195, 2016.

[16] T. Dao, L. Zhang, and N. Meng, “How Does

Execution Information Help with Information-

Retrieval Based Bug Localization?,” IEEE Int. Conf.

Progr. Compr., pp. 241–250, 2017.

68

Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey
of Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

Bug ID

Open date

Summary

Description

Fixed Files

50303

2004-01-20 20:55

Ant Editor outline ”Link with Editor”

Similar to the Java Editor it would be a nice enhancement to have a ”Link with

Editor” toggle button for the Ant Editor outline page

Org.eclipse.ant.internal.ui.editor.AntEditor.java

7 other files

 Figure 2: Previously Fixed Bug Reports

 Figure 3: An Eclipse Bug report with fixed files

Bug ID: 76138
Open Date: 2004-10-12 21:53:00

Summary: Ant editor not following tab/space setting on shift right

Description:
This is from 3.1 M2. I have Ant->Editor-> Display tab width set to 2, insert spaces for tab
when typing checked. I also have Ant->Editor->Formatter->Tab size set to 2, and use tab
character instead of spaces _unchecked_.
Now when I open a build,xml and try to do some indentation, everything works fine
according to the above settings, except when I highlight a block and press tab to indent it.
It’s the tab character instead of 2 spaces that’s inserted in this case.

Fixed Files:
org.eclipse.ant.internal.ui.editor.AntEditor.java
org.eclipse.ant.internal.ui.editor.AntEditorSourceViewerConfiguration.java

69

Vol. 11, No. 4, December 2018, pp. 65 - 70 ISSN 2006-1781

Shakirat Aderonke Salihu, Oluwakemi Christiana Abikoye, Amos Orenyi Bajeh and Abimbola Ganiyat Akintola (2018), A Survey
of Empirical Studies on Performance Enhancement Features for IR-based Bug Localization Process

© 2018 Afr. J. Comp. & ICT – All Rights Reserved

https://afrjcict.net

 Table 1: Summary of the automated tools and their performance measures.

Project
[8]

Approach
[13] [14]

Top1

(%)

Top5

(%)

Top10

(%)

MAP MRR

AspectJ BLIA 37.7 64.4 73.2 0.323 0.491

BugLocator 30.8 51.1 59.4 0.22 0.41

BRTracer 39.5 60.5 68.9 0.286 0.491

AmaLgam 44.4 65.4 73.1 0.33 0.54

AmaLgam+ 49.4 72.7 80.3 0.40 0.60

BLUiR 33.9 52.4 61.5 0.25 0.43

Baseline No

Enhancement

12.59 23.78 28.67 0.18 0.08

SWT BLIA 68.4 82.7 89.8 0.637 0.746

BugLocator 39.8 67.4 81.6 0.45 0.53

BRTracer 46.9 79.6 88.8 0.53 0.595

AmaLgam 62.2 81.6 89.8 0.62 0.71

AmaLgam+ 63.3 80.6 89.8 0.62 0.71

BLUiR 56.1 76.5 87.8 0.58 0.66

Baseline No

Enhancement

11.22 32.65 45.92 0.23 0.20

ZXing BLIA 50.0 60.0 80.0 0.506 0.574

BugLocator 40.0 60.0 70.0 0.44 0.50

BRTracer N/A N/A N/A N/A N/A

AmaLgam 40.0 65.0 70.0 0.41 0.51

AmaLgam+ 40.0 65.0 70.0 0.41 0.51

BLUiR 40.0 65.0 70.0 0.39 0.49

Baseline No

Enhancement

20.0 35.0 50.0 0.28 0.27

Eclipse BLIA N/A N/A N/A N/A N/A

BugLocator 29.1 53.8 62.6 0.30 0.41

BRTracer 32.6 55.9 65.2 0.33 0.43

AmaLgam 34.5 57.7 67.0 0.35 0.45

AmaLgam+ 35.7 60.3 69.1 0.36 0.47

BLUiR 32.9 56.2 65.4 0.33 0.43

Baseline No

Enhancement

6.86 16.91 23.93 0.13 0.09

70

